Newly discovered phytoplankton groups appear to favor warmer oceans

Summary: An international research team has discovered two phytoplankton groups -- unlike any known species -- in climate-sensitive areas around the world. While they appear relatively rare compared to other phytoplankton, scientists say their prevalence in warm waters suggests they could be important in future ocean ecosystems.

The study traced the phytoplankton genes to their potential ancient origins and matched them with sequences in around 200 contemporary samples. The new phytoplankton groups were increasingly abundant in warmer, low-nutrient surface waters at sites including the Sargasso Sea, Bay of Bengal and North Pacific Gyre.

These new phytoplankton appear to thrive in the world's most desert-like waters where most other eukaryotic species decrease, said Alexandra Z. Worden, who led the team from the Monterey Bay Aquarium Research Institute (USA) alongside collaborators from Oregon State University (USA), WHOI (USA) and the NIO (India).

Both phytoplankton groups were found in larger numbers in warmer, low-nutrient surface waters compared to numbers in cooler, higher-nutrient regions. This pattern surprised researchers because larger, eukaryotic phytoplankton often decline to vanishingly-low numbers under these conditions, which typically favour small cyanobacteria.

Ocean surface warming creates a layer of low-nutrient water separate from cooler, nutrient-rich water below. This process occurs annually in large regions of the open ocean where punctuated winter mixing allows for a short "bloom" of phytoplankton life that is followed by a summer season of warm, low-nutrient surface waters. Most of the bloom species disappear during summer because they are not effective competitors for nutrients at low concentrations. Ocean surface warming is leading to an expansion of these low-nutrient environments in a process known as ocean desertification.

Scientists have had difficulty measuring the impact of ocean warming on resident microbial groups due to a lack of consistent information on microbes, like the phytoplankton that carry out marine photosynthesis. Worden's team established the Baselines Initiative to overcome this hurdle with more than 6000 full-length RNA sequences and time-series sampling, where the same location is sampled repeatedly through the seasons and over the years. The ultimate goal of these oceanographic time-series is to capture current day information against which future changes in the ocean can be assessed.

Researchers first discovered one of the new phytoplankton groups in 2006 when they noticed one "weird" sequence out of millions. They thought the data from a tropical island off Costa Rica might have been a mistake until they saw identical sequences in the North Pacific and in coral reefs off Curacao. To verify their findings, they filtered the organisms' DNA from the seawater. Next, they generated the full-length RNA gene sequence and compared it with other organisms to place it in an evolutionary tree. Finally, they mapped the organisms through samples from the BIOS Bermuda Atlantic Time-Series Study, the TARA Oceans Expedition and the Baselines Initiative, including the SeaFar Curacao project of the Integrated Microbial Biodiversity Program.

The first phytoplankton lineage appears to be an entirely new group of species of phytoplankton. Researchers believe its ancestor may be a single-celled prasinophyta group that took a separate evolutionary path from the haptophyte algae, which arose between 1 billion and 637 million years ago. The second lineage appears to be closely related to haptophytes. However, it is a new group that doesn't belong to any known species or class.

There is a need to better understand the ecology of the two phytoplankton groups. How these groups contribute to the food chain and carbon cycle is currently unknown. One possibility is that they get their nutrients though a combination of photosynthesis and feeding on other cells. Further research is required in this direction……

Correspondence

Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed

Chang Jae Choi, Charles Bachy, Gualtiero Spiro Jaeger, Camille Poirier, Lisa Sudek, V.V.S.S. Sarma, Amala Mahadevan, Stephen J. Giovannoni, and Alexandra Z. Worden

Ocean surface warming is resulting in an expansion of stratified, low-nutrient environments, a process referred to as ocean desertification [1]. A challenge for assessing the impact of these changes is the lack of robust baseline information on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple evolutionary events [1–3]. While amassing data from ocean ecosystems for the Baselines Initiative (6,177 near full-length 16S rRNA gene sequences and 9.4 million high-quality 16S V1-V2 amplicons) we identified two deep-branching plastid lineages based on 16S rRNA gene data. The two lineages have global distributions, but do not correspond to known phytoplankton. How the newly discovered phytoplankton lineages contribute to food chains and vertical carbon export to the deep sea remains unknown, but their prevalence in expanding, low nutrient surface waters suggests they will have a role in future oceans.

Phylogenetic relationships between the two deep-branching plastid lineages and other phytoplankton were established using an alignment of near full-length 16S rRNA genes that incorporated new plastid sequences from Baselines Initiative (see Supplemental Information, published with this article online). These were generated from three North Pacific sites to augment the SILVA database. The general relationships illustrated were consistent with prior studies [3–5]. Glaucothyphae, Viridiplantae and Red Algae, which arose from the primary endosymbiosis event, emerged in the basal region of the tree while important marine taxa that arose from secondary (or higher level) events, such as haptophytes and stramenopiles [3], formed distinct clades elsewhere (Figure 1A). The novel plastid lineage referred to here as deep-branching plastid lineage 1 (DPL1) was discovered in samples from the edge of the North Pacific Gyre (NPG) and coastal California. Complete DPL1 16S rRNA gene sequences acquired by two PCR approaches had best blastn hits of <85% nucleotide identity to unassembled environmental clones in GenBank (Supplemental Information). In phylogenetic reconstructions, DPL1 branched adjacent to haptophytes (Prymnesiophyceae), albeit with long branch-lengths (Figure 1A). Testing of phylogenies using varied taxonomic sampling established that DPL1 sequences do not come from fast-evolving dinoflagellate plastid origins [6] were included, DPL2 (blue) branch-lengths are reduced by 50% and the tree is rooted for display purposes; cyanobacteria are the outgroup. Posterior probability/RAxML/PhyML bootstrap percentages are shown when >0.9/50/50 or fully supported in all analyses (black dots). (B) DPL detection in Baselines 16S rRNA V1-V2 amplicon data from non-size fractionated surface samples (closed circles) in the North Pacific (6 samples), Indian Ocean (29), near Curacao (14) and Sargasso Sea (85 BATS samples), and in Tara Oceans photic zone 16S miTAGs (<200 m depth; open circles). The 77 Tara 0.2 to <3 µm size-fraction photic-zone samples with DPL1 (n = 32, 22.2 ± 5.5°C) and/or DPL2 (n = 50, 22.1 ± 3.8°C) were warmer than those where not detected (17.6 ± 8.4°C, p < 0.05). (C) DPL1 (orange) and DPL2 (blue) percent contributions to Indian Ocean 16S plastid amplicons. (D) Temperature and phytoplankton-derived chlorophyll a concentrations (top two plots) show BATS seasonal changes. The X-axis reflects a seasonal composite of 12 years of monthly data [8] adjusted to timing of deep mixing (DM) and months post or prior to DM (numbers). Mean percent DPL1 or DPL2 ± standard error in plastid-derived 16S amplicons (bottom plots) highlights dynamics in BATS surface samples (0.3 to 7.6 m). Samples from winter (<21°C; typically –1, DM and +1) had lower relative abundances than during stratification (p < 0.01).
dinoflagellate plastids, or within the Prymnesiophyceae (Figure S1A, B). Diversity of DPL1 (DPL1-clusters C, D, and E) and phylogenetically related novel amplicons (DPL1-related clusters A, B, F–J) was manifested in the 16S V2 variable region (Figure S1C–S1D). DPL1 was present in a Baselines ≥3 μm size-fractionated sample and nearly all non-fractionated samples, but not picoplankton (<3 μm) samples. Thus, we postulate DPL1 sequences originate from a diverse eukaryotic protistan group, with cells ≥3 μm diameter, that bears tertiary plastids of haptophyte origin.

Another plastid lineage unrelated to known phytoplankton, ‘DPL2’, was recovered from the picoplankton size fraction in oligotrophic NPG waters. They exhibited 99.6% nucleotide identity to a clone from surface waters near Costa Rica (GOS site 25), a Pacific Ocean site with higher temperature (28.3°C) and lower salinity (31.4 ppt) than our NPG site (19.0°C, 33.2 ppt). DPL2 sequences branched in a sister position to haptophytes, rappromonads and DPL1 with moderate to strong bootstrap support, suggesting they are derived from secondary plastids (Figure 1A). Analyses of molecular data alongside fossil records indicate haptophytes arose 1,031–637 million years ago and that the two haptophyte classes diverged 823–1,031–637 million years ago and that the fossil records indicate haptophytes arose 823–1,031–637 million years ago. When Prochlorococcus contributed >10% of total 16S amplicons, temperature (23.92 ± 2.68°C) was not statistically different from samples with highest DPL1/DPL1-related contributions (Figure S1E–S1F). However, DPL1/DPL1-related contributions were lower (p < 0.001) when eukaryotic phytoplankton as a whole contributed >10% of total amplicons, during which it was also cooler (20.38 ± 0.89°C, p < 0.001) and less stratified. This contrast suggests that among eukaryotes at BATS [8] DPL1/DPL1-related taxa may be relatively effective competitors for macronutrients.

Recent studies highlight previously unrecognized sequence diversity within known macronuclear eukaryote classes. Our discoveries are exceptional in identifying new, deep-branching phytoplankton lineages. Only two other such deep-branching uncultured plastid lineages have been discovered in the last decade: Rappemonads [5] and the coral-associated Apicomplexan-Related-Lineages [4]. The distributions of the lineages we discovered suggest they tolerate a broad range of conditions, but may increase numerically as ocean warming progresses, akin to predictions for Prochlorococcus [10]. The discovery of the DPL algal groups in contemporary samples illustrates the importance of time-series sampling for acquiring essential data points for comparison as ocean ecology adjusts to changing climate.

SUPPLEMENTAL INFORMATION

Supplemental Information contains experimental procedures, one figure and one table can be found with this article online at http://dx.doi.org/10.1016/j.cub.2016.11.032.

REFERENCES

*Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA. 1Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. 2National Institute of Oceanography, Visakhapatnam, India. 3Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA. 4Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada. 5Co-first authors.

*E-mail: azworden@mbari.org